dr hab. Ryszard Wiśniewski
prof. nzw. UKW Bydgoszcz – do 31.03.2019
obecnie emeryt UMK Toruń
wisniew@umk.pl

Recenzja rozprawy doktorskiej
Wydział Biologii i Ochrony Środowiska
Uniwersytetu Łódzkiego

Imię i nazwisko kandydata: mgr Maciej Jerzy Skłodowski
Tytuł rozprawy doktorskiej: „Możliwości zwiększenia samooczyszczania ekosystemów
lotycznych przez regulację czynników biotycznych i abiotycznych”.

Promotor: prof. dr hab. Joanna Mankiewicz-Boczek
Promotor pomocniczy: dr hab. Adrianna Wojtal-Frankiewicz prof. nzw. UŁ

Wstęp. Woda, zasoby, jakość, prognozy, próby oczyszczania. Problemy, w które
wpisuje się Rozprawa.

W przypadku jezior, podejmując jakiekolwiek działania rekultywacyjne powinno się
mieć na uwadze, że to fizyczne bądź chemiczne, zewnętrzne i wewnętrzne czynniki
środowiskowe mogą spowodować głębokie zmiany, destabilizować ekosystem wodny i
zepchnąć go do jednego z dwu alternatywnych stanów stabilnych. To elementy biologiczne i
uwarunkowane nimi procesy zachodzące w ekosystemie wodnym stabilizują i utrwalają
istniejący stan. Dla poprawy sytuacji w zdegradowanym jeziorze nie wystarczy przywrócić
jego stan do sytuacji przed zakończeniem. Wiele sprzątnie zwrotnych w jeziorze utrwała stan
po zmianach i jeziora wykazują „resilience”, czyli odporność, „odprężność” na zabiegi
rekultywacyjne. Warunkiem zastosowania jakiejkolwiek metody rekultywacji jest uprzednia
redukcja stężenia fosforu w wodzie do poziomu 0,100 mg PO₄/1 (lepiej 0,050 mg PO₄/1) i
usunięcie albo zablokowanie/inktywowanie fosforu w osadach (zahamowanie importu
wewnętrznego).

Produkujemy ścieki, ale przecież trafiają do sieci kanalizacyjnej i są kierowane do
nowoczesnych oczyszczalni. Czy woda na wypływie z oczyszczalni nadaje się do picia? Czy
zawarty w ściekach fosfor, którego zasoby kopalne zaczynają się kończyć zostanie odzyskany
w oczyszczalniach i umożliwi wyprodukowanie nawozu niezbędnego dla roślin z których
wyprodukujemy żywność?

Fosforany trafiają do wód powierzchniowych głównie z nawozów rolniczych, z
intensywnych hodowli bydła, koni, owiec, czy kur, oraz ze ścieków. Trzecim, największym
źródłem są detergenty. Mało kto wie, że trójpolifosforan jest najczęściej stosowanym
związkiem w detergentach domowych i przemysłowych ze względu na właściwości
poprawiające zmywanie, niewielu twardość wody i mało kosztuje. Rada UE dopiero od 1
stycznia 2017 wymaga by zawartość P w jednym dozowaniu w automatycznych zmywarkach
do naczyń nie przekraczała 0,3 g (300 mg !). Producentem fosforu jest także człowiek. Mało kto wie, że w ludzkim moczu to 1,0 g w każdym litrze. Znajdują się w nim także, częściowo tylko metabolizowane antiutyki i substancje hormonalne – w literaturze naukowej opisano kilka przypadków zarybiania akwenów wodnych kończących się tylko wzrostem wprowadzonej populacji. Dorosłe ryby nie były w stanie produkować ikry na skutek rozchowywania układu rozrodczego spowodowanego obcymi hormonami.

Oczyszczalnie, nawet te nowoczesne, w niewielkim stopniu usuwają, czy odzyskują, fosfor. Są w nich zaprojektowane moduły do wytrząania fosforu, ale procedura jest kosztowna i nie jest uruchamiana, także w wielu krajach UE. Od kilku zaledwie lat w kilku krajach (np. polsko-szwedzki program naukowy) próbuje się odzyskiwać w oczyszczalniach fosfor i produkować nawóz struwt.

W czasie zajęć terenowych studentów UKW Bydgoszcz, Krówka Leśna – Bory Tucholskie czerwiec 2017, stwierdzono w wodzie deszczowej 1,25 mg PO₄/l. Tu źródłem P, jak ustaliliśmy w wielu wywiadach, mogła być fosfiną, fosforowód PH₃, jedynym obecnie fumigantam, stosowany do zabezpieczenia ziaren zbóż przechowywanych w siłosach. Fosforowód jest tylko 1,2 razy cięższy od powietrza, więc z łatwością się z nim miesz.

Jeszcze innym problem uniemalowujący naprawdę, bądź utrzymanie dobrej jakości wód powierzchniowych, to archaiczność naszych oczyszczalni. W Gnieźnie np. ogólnoplanowa sieć przyjmuje ścieki bytowe i wodę deszczową. Mała średnica rur powoduje, że w czasie ulewnych deszczu sieć jest przepelniana i mieszanina ścieków i deszczówki wylewa się na ulicę kończąc swój bieg w jeziorze Jelonke. Skutkiem są, co pewien czas występujące, przyduchy powodujące masowe śnięcia ryb.

Pozna wspomnianym powyżej zanieczyszczeniami, coraz poważniejszym problemem jest cykliczne wysuszenie i ponowne nawadnianie cieków mających kontakt z jeziorami. W czasie suszy frakcja organiczna fosforu zablokowana w komórkach glonów i makrofitów zamienia się w mobilny jon PO₄, po ich obumarciem. W badanym przez kilka lat jeziorze Wolsztyńskim (do 2017 roku), połączony z jeziorem ciek, wysypujący latem, wnosił po intensywnym deszczu - nawet 67,0 l/m², aż 1,25 do 2,12 mg PO₄/l we wrześniu. Inny ciek łączący to jezioro ze stawami rybackimi wnosił w lipcu 0,58 mg PO₄/l i 148,0 mg/l zawiesiny.

W marcu i kwietniu 1997 w jeziorze Skępskie Wielkie, suchy latem rów, wnosił do jeziora 7,0 mg PO₄/l, prawdopodobnie były to nieoczyszczone ścieki odprowadzane wprost do jeziora. W badaniach monitoringowych z 2010 roku ten sam rów wyróżnił się wielkością wnoszonego ładunku azotu, jedynie w nim stężenie azotanów osiągało wartość 7,48 mg/l. Mimo, że ciek zlokalizowany jest w pobliżu odpyłu rzeki Miec (dobyw Wisły), jest bardzo prawdopodobne, że przy zachodnich wiatrach substancje wnoszone do jeziora w tym miejscu mogą być rozprzestrzeniane na znacznej powierzchni jeziora, a na pewno docierają do Wisły i Bałtyku.

Autor rozprawy ma absolutną rację. Jeśli istnieje problem, powinno się go rozwiazywać pociągając od jego źródła. Rekultywacja tylko jezior nie rozwiaże problemu
kurczących się zasobów wody, nawet tej z jezior, nadającej się do spożycia dopiero po przegotowaniu. Przypadki uzyskania dobrych efektów, zmiany stanu mętno-wodnego, z dominacją ścieśnia, na stan czysto-wodny z dominacją makrofitów są wciąż jeszcze nieliczne w skali Europy. Nawet po uzyskaniu szybkiej zmiany reżimu ekosystemu jeziornego, nie wiemy jak utrzymać go przez długi okres czasu.

Dwa wyraźne „regime shifts” uzyskane przez poznaniową firmę „Prote”, z którą recenzent współpracuje i ich trwałość, dają wiele do myślenia. Jeden to jezioro Winiary w Gnieźnie, a drugi to zbiornik wody technologicznej dla rafinerii Gdańskiej, utworzony w odizolowanym ramieniu rzeki Motława. W obydwa zbiornikach zmiany nastąpiły bardzo szybko. Po wykonanych jesienią zabiegach, już wiosną następnego roku były widoczne. Uzyskano przezroczystość do dna - 4,5 m w Winiarach i 5,0 m w Gdańsku. Pojawiła się gąbka słodkowodna Spongilla lacustris, także małże Dreissena polymorpha. W ciągu 2-go i 3-go roku makrofity, głównie moczar kanadyjska, opanowały całą powierzchnię dna w obydwa zbiornikach. W 5 roku rozrosły się nadmiernie. W Gdańsku, zawiesina zawarta we w pompowym chodnikiu wodzie, pobieranej z płynącej w pobliżu rzeki Motławy, nie docierało do powierzchni dna, osiągnęła na liściach makrofitów. W Winiarach, mimo innego źródła zawiesiny, efekt był podobny. Przeciwodpływ wody spadła niemal do punktu wyjściowego w przypadku Motławy i o ponad połowę w przypadku Winiar.

Wartość merytoryczna rozprawy:

Het recenzent ma nadzieję, że efekty bardzo interesujących badań Autora da się wykorzystać także w naprawianiu zdegradowanych ekosystemów jeziornych, przynajmniej tych, przez które przepływa rzeka, zaczynająca się samooczyszczającym się strumieniem I rzędu.

Jon PO₄ w wypelnionym natlenioną wodą strumieniu, w którym także woda interstycjonalna, śródasowsa jest także natleniona, jest w niej blokowany przez słaby ładunek fizyczny utlenionego wodorotlenku żelazowego FeO₂H – PO₄ (ang. ferric oxide hydroxide). W osadach jeziornych natlenienie wody śródosasowej dotyczy zwykle kilku milimetrów powierzchniowej warstwy granicznej osad-woda naddenna, czasami jest tylko 1 milimetr.

Poprawnie funkcjonujące strumienie, zwłaszcza te najmniejsze, są bardzo ważne dla funkcjonowania zbiorników wodnych, w których kończą bieg. Morfologia dna strumieni – bystrza i plosa, sinusooidalny przepływ wody, dostęp światła warunkujący rozwój makrofitów, fitoplanktonu i epifitonu, a także epifitonu (sinice i głony zasiedlające powierzchnię drobno cząstkowego osadu) umożliwia ukrzyżomienie procesu samooczyszczania. Tym strumieniom i intensyfikacji tego procesu poświęcona jest recenzowana rozprawa.

To bardzo wartościowe badania, nie tylko dla potomologów. Autor przyjął dwa założenia, dwie hipotezy badawcze:

JDLOA to – że sztuczny strumień jest doskonałym narzędziem do weryfikacji roli czynników fizycznych, chemicznych i biologicznych biorących udział w procesie samooczyszczaniu płynającej w mim wody. To ryzykowny projekt, bo po pierwsze należało skonstruować go tak, by obserwowane procesy odpowiadały tym zachodzącym w naturalnych strumieniach. Stąd skala mezo czyli 60 metrów. Po drugie za sam proces samooczyszczania odpowiadają organizmy (bakterie i głony) czyli skala micro i wymagana precyzja obserwacji i pomiarów.

Druga hipoteza to , że zmiany jakie będą zachodziły, będą odpowiadały naturalnej zmienności warunków środowiskowych. Czyli także przepływ wody powinien być taki jak w
naturalnym strumieniu. Stąd konieczność zróżnicowania struktury i głębokości dna – bystra i plosa, by wymusić spiralny przepływ wody.

Autor poradził sobie także z białej największym problemem, jak odizolować skonstruowany strumień od zakłóceń zewnętrznych, choćby wpływów wody powierzchniowej, np. po opadach deszczu, czy wysięków wody gruntowej. Szczególny strumień skonstruowany został w wybconetowanej rynnie. W konstrukcji Autor uzupełnił odcinek kontrolny i badawczy, oraz sekcje zacienione i jasne dla symulacji zacienienia powodowanego w naturalnych strumieniach przez drzewa.

Efektem 2 letnich badań są bardzo obszerne wyniki zebrane w 47 tabelach i 44 rycinach. Wszystkie wyniki zostały wzorcowo opracowane statystycznie. Dla tych wyników, które nie miały rozkładu normalnego Autor zastosował testy nieparametryczne: test kolejności par Wilcoxon, test U Mann-Whitney’a, test nieparametryczny Kruskala-Wallisa.

Do rozpoznawania wzorców wzajemnego oddziaływania parametrów wody, relacji przyczynowo-skutkowych pomiędzy abiotycznymi i biotycznymi czynnikami determinującymi jakość wody Autor zastosował algorytm k najbliższych sąsiadów - nieparametryczną metodę używaną do klasyfikacji i regresji, rzadko spotykaną w publikacjach.

W rozdziale 5. Dyskusja, w podrozdziale 5.3 – „Wytypowanie kluczowych parametrów środowiskowych wpływających na tempo samooczyszczania wody”, Autor dokonuje oceny uzyskanych wyników pod kątem ich roli w procesie samooczyszczania wody. Stwierdza, że potwierdzają one założenia przyjęte w obydwu hipotezach badawczych. Także, że „...” mogą stanowić wskazówki w procesie świadomego kształtowania obiegu wody z uwzględnieniem kontroli mechanizmów przepływu energii i obiegu materii w ekosystemach i krajobrazach rolniczych w celu intensyfikacji procesu samooczyszczania wód płynących”. Autor stwierdza również, że mogą być wykorzystane praktycznie w celu optymalizacji procesów samooczyszczania w istniejącym już strumieniu kanale o średnim natężeniu przepływu (Q) zbliżonym do 1,15 L s⁻¹ na terenach użytkowanych rolniczo, po zmianach, bądź adaptacji parametrów związanych z charakterystyką hydromorfologiczną koryta cieku. Adapacja dotyczyła by głównie: stabilizacji brzegów, regulacji - lub stworzenia zróżnicowania głębokości siedlisk w sekwencji bystrzy (o głębokości ≤ 7 cm) i plos (o głębokości ≥ 10 cm), jak też regulacji prędkości przepływu wody do optymalnej dla procesu transportu i sedimentacji zawiesiny organicznej.

3. Poprawność redakcyjna rozprawy

Rozprawa napisana jasnym, bardzo zwartym, rzeczowym stylem, wymagającym koncentracji ze strony czytelnika. W drugim czytaniu Recenzent miał szansę na znalezienie literówk i ewentualnych uchybień redakcyjnych. Jak na objętość rozprawy, jest ich nie wiele:

Strona 12 – jest – „Dodatkowo, warto przypomnieć, iż wskaźnik stężenia fosforu w wodach płynących...” świadczy o eutrofizacji jest często niższy (TP > 0,25 mg L⁻¹) od poziomu, który wywołuje stan eutrofii w jeziorach (TP > 0,1 mg L⁻¹) (Paerl 2008, Rinta-Kanto i in. 2005, Dz.U. 2016 poz. 1187 z późn. zm.). Szczególnie widać to w dużych rzekach poddanych wpływom aktywności antropogenicznej i w ciekach płynących przez obszary uprawne (Allan 1997).” Nie znam cytowanych źródeł, ale z relacji niższy 0,25 – wyższy 0,1, wartości TP powinny być zamienione.

Drobne literówki:
strona 13 – jest - cylindropermopsyn, powinno być - cylindropermopsyny
strona 14 – jest - i isinie, powinno, być - i sinicz
strona 20 – jest - związków biogennych, powinno być - związków biogennych
strona 24 - jest - zacienienie, powinno być - zacienienie
strona 27 – jest - z wzrostem, powinno być – ze wzrostem

Rysunki: do rysunku 12 przy prawym dolnym narożniku pojawiają się objaśnienia symboli
na nich zawartych – Mean, Mean SE i Mean SD. Na rysunku 13 pojawia się dodatkowo „%
redukcja”, ale nie ma odpowiednika w treści rysunku. Powtarza się to do rysunku 21, na
którym pojawia się wartość %, od rysunku 22 objaśnienie „% redukcja” znikła. Absolutny
drobiazg ale przygotowując rozprawę do druku, warto się go pozbyć.

W Rozdziale VIII Literatura – 4 krotnie cytowana praca doktorska – Łapińska M. 1996. jest
umieszczona w spisie literatury na pozycji 159, pomiędzy nazwiskami rozpoczynającymi się
na literę L. Powinno się ją umieścić po wszystkich autorach z nazwiskiem na literę L, jako
jedynie nazwisko na Lo na pozycji 173.

Struktura rozprawy – klasyczna, ale niektóre podrozdziały rzadko pojawiają się w rozprawach
doktorskich np. podrozdział 4.2 w Wynikach, czy 5.3 w Dyskusji. Bardzo wartościowy jest
także rozdział IX Załączniki, w którym Autor podaje spis 47 tabel – podrozdział IX.1 i 44
rycin - IX.2, ze stronami, na których występują. Bardzo wartościowy jest także podrozdział
IX.3.1 – w którym zestawione zostały wyniki szacowanego ładunku zawiesiny organicznej,
fosforu ogólnego oraz azotu ogólnego i azotanowego retençonowanych w Odcinku
Badawczym sztucznego strumienia.

Spis treści, wybrane, podrozdziały:
1. Wstęp:
2. Teren badań:
3. Materiał i metody:
 3.2.1. Analiza zmian parametrów fizykno-chemicznych wody w trakcie
 kontrolowanego dopływu związków biogennych
4. Wyniki:
 4.2 Analiza związków przyczynowo-skutkowych między parametrami
 badanymi w monitoringu cyklicznym
5. Dyskusja:
 5.2 Diagnoza relacji przyczynowo-skutkowych pomiędzy abiotycznymi i
 biotycznymi czynnikami determinującymi jakość wody
 5.3 Wytypowanie kluczowych parametrów środowiskowych wpływających na
 tempo samooczyszczania wody
6. Wnioski
7. Streszczenie
8. Literatura – 342 pozycje, w tym 24 polskojęzyczne
9. Załączniki

5. **Ocena końcowa**

Nieliczne, głównie dyskusyjne, uwagi, w żadnym stopniu nie obniżają bardzo
wysokiej ogólnej oceny przedstawionej mi do recenzji rozprawy.
Swierdzam, że praca p.t. „Możliwości zwiększenia samooczyszczania ekosystemów
lotycznych przez regulację czynników biotycznych i abiotycznych” spełnia wymagania
stawiane rozprawom doktorskim przez Ustawę o Stopniach i Tytule Naukowym obowiązującą aktualnie w Polsce.

Stawiam wniosek o dopuszczenie jej do publicznej obrony.

Jednocześnie, biorąc pod uwagę ważność podjętej tematyki badawczej, rozległość i precyzję przeprowadzonych badań oraz wysoki poziom merytoryczny recenzowanej rozprawy Autora, wnioskuję o jej wyróżnienie.

[Data sporządzenia recenzji]

[Podpis recenzenta]