The Head of the Department: prof. dr hab. Maria Bryszewska

Address: ul. Pomorska 141/143, 90-236 Łódź, building D

Phone: +48 42 635 4474

Fax: +48 42 635 4474



Name Phone e-mail Building/

Prof. dr hab. Maria Bryszewska
(Head of the Department)

+48 42
635 44 74
D/Bfi-37 Thursday

Prof. dr hab. Teresa Gabryelak

+48 42
635 44 78
D/Bfi-43 Tuesday

Prof. dr hab. Barbara Klajnert-Maculewicz

+48 42
635 44 29
D/Bfi-44 Wednesday

Dr hab. Maksim Ionov,
Associate Professor

+48 42
635 43 80

Dr hab. Katarzyna Miłowska,
Associate Professor

+48 42
635 44 78
D/Bfi-43 Wednesday

Dr hab. Anna Janaszewska

+48 42
635 44 29


Dr hab. Agnieszka Robaszkiewicz

+48 42
635 41 44
D/Bfi-38 Tuesday

Dr Monika Marcinkowska

+48 42
635 41 47

D/Bfi-20-22 Monday

Dr Elżbieta

+48 42
635 43 80
D/Bfi-42 Wednesday

Dr Michał Gorzkiewicz

+48 42
635 41 47


M.Sc. Monika Błaszczyk

+48 42
635 41 44


M.Sc. Elżbieta Okla

+48 42
635 41 44



Ph.D. students:

Name Phone e-mail Building/

M.Sc. Kamila Białkowska

+48 42
635 41 47


M.Sc. Marcin Hołota

+48 42
635 41 47

D/Bfi-20-22 Thursday
M.Sc. Małgorzata Kubczak

+48 42
635 41 47

D/Bfi-20-22 Thursday

M.Sc. Jakub Kajdanek

+48 42
635 41 47

D/Bfi-20-22 Wednesday
M.Sc. Marta Kędzierska

+48 42
635 41 47

D/Bfi-20-22 Tuesday
M.Sc. Julita Pietrzak

+48 42
635 41 47

D/Bfi-20-22 Thursday

M.Sc. Maciej Sobczak

+48 42
635 41 47
D/Bfi-20-22 Tuesday

M.Sc. Krzysztof Sztandera

+48 42
635 41 47

D/Bfi-20-22 Thursday


Research topics of the Department of General Biophysics:

Nanoparticles and their use in biomedicine.

Nanoparticles and materials studied (obtained from foreign partners as a part of international cooperation and commercially available)

  • dendrimers (PAMAM, PPI, lysine, glycodendrimers, phosphorus, carbosilane, viologen, hybrid, ruthenium, copper, gold-containing dendrimers);
  • surface-modified gold/silver nanoparticles (dendronized, PEGylated);
  • chitosan films and microfibres;
  • cucurbiturils;
  • polymersomes;
  • mesoporous silicas;
  • liposomes.

Basic research includes:

  • interaction of nanoparticles with proteins, peptid;
  • interaction of nanoparticles with nucleic acids;
  • interaction of nanoparticles with biological and model membranes;
  • autofluorescence and luminescence of some nanoparticles.

Toxicity tests of:

  • nanoparticles and nanoparticle-ligand complexes, nanoparticle-drug conjugates: cytotoxicity and genotoxicity to selected normal and cancer cell lines, toxicity to blood cells, and in vivo testing.

Application studies concern:

  • nanoparticles as carriers of anti-cancer and anti-inflammatory drugs;
  • dendrimers as therapeutic agents (able to disrupt protein aggregates) in neurodegenerative diseases (Alzheimer's, Parkinson's disease);
  • dendrimers and gold/silver nanoparticles as carriers of antisense oligonucleotides and siRNAs in gene therapy directed against HIV and in cancer therapy;
  • antibacterial and antifungal properties of selected nanoparticles;
  • dendrimers as photosensitizer carriers in photodynamic therapy;
  • immunomodulatory properties of selected dendrimers.

The role of transcription modulators in cell differentiation and cancerogenesis.

Scope of the working group includes:

  • changes in cell proliferation status during differentiation and de-differentiation/cancerogenesis;
  • their impact on transcription and expression of genes that are responsible for cell phenotype and biological function;
  • identification of activators and repressors of gene transcription and alterations in the epigenetic code that accompany cell transition from one to the other type;
  • identification of chromatin remodeling enzymes, which are responsible for overexpression of genes that determine multidrug resistance of cancer cells;
  • role of PARP1 as transcription co-factor in cancer cells and in gaining of immune tolerance to bacterial endotoxin by macrophages.

Application studies concern:

  • the use of PARP inhibitors to modulate immune response (particularly to control transcription of pro-inflammatory mediators);
  • the use of inhibitors of chromatin remodeling enzymes to overcome multidrug resistance in cancer cells.

The Department of General Biophysics is equipped with cell and biophysical laboratories, enabling the characterization of the physicochemical properties of the nanoparticle-ligand complex, i.e. morphology, size, zeta potential, stability in time, at different pHs or in the presence of enzymes; determination of the secondary structure of proteins, nucleic acids, transfection efficiency and gene silencing, detection of apoptosis and necrosis, DNA damage. It has equipment for analyzing gene expression at both RNA and protein levels.


Research projects carried out by the Department of General Biophysics (last 5 years)

  1. Project NCNBEETHOVEN LIFE 1 2020–2022 "New polymer nanoparticles for nucleic acid transport in the treatment of lung diseases synthesis, toxicological analysis and biological-therapeutic evaluation" UMO-2018/31/F/NZ5/03454. Coordinator: prof. dr hab. Maria Bryszewska.
  2. Project LIDER/22/0122/L-10/18/NCBR/2019 "Breaking the multidrug resistance of cancer at genomic level: development of the method based on inhibitors of enzymes which arecapable of chromatin remodeling that aims to prevent overexpression of ABC transporters in cancer cells". Duration: 2020–2023. Coordinator: dr hab. Agnieszka Robaszkiewicz.
  3. Project M-ERA.NET 2019–2021 "Nanoparticle transferthrough endothelial barrier" UMO-2018/30/Z/NZ1/00911. Coordinator: prof. dr hab. Maria Bryszewska.
  4. Project NCNPRELUDIUM 2019–2021 "PAMAM dendrimer as carrier for mesalazine to enhance the efficacy of inflammatory bowel disease therapy – in vitro studies" UMO-2018/31/N/NZ7/00374. Coordinator: M.Sc. Eng. Michał Gorzkiewicz.
  5. Project NAWA-APM 2019–2020 "Actions strengthening and disseminating the international partnership of the Faculty of Biology and Environmental Protection for interdisciplinary research and innovation at the University of Lodz". Coordinator: prof. dr hab. Maria Bryszewska.
  6. Bilateral program with Slovakia 2019–2020 "New Drug Delivery Nanosystems Combining Liposomal and Dendrimeric Technology (Liposomal Locked In Dendrimers) for development of cytostatic drugs". Coordinator: dr hab. Maksim Ionov, Associate Professor
  7. COST Action CA17140 2018–2022 "Nano2Clinic: Cancer Nanomedicine – from the bench to the bedside". Coordinator: prof. dr hab. Barbara Klajnert-Maculewicz.
  8. Project OPUS 2018–2021 "Phosphorus dendrimers as photosensitizer carriers – in vivo studies". UMO-2017/25/B/NZ7/01304. Coordinator: prof. dr hab. Barbara Klajnert-Maculewicz.
  9. Project HARMONIA 2015–2019 "Auto-fluorescing dendrimers – spectrofluorimetric and cellular studies". UMO-2014/14/M/NZ3/00498. Coordinator: prof. dr hab. Barbara Klajnert-Maculewicz.
  10. HORIZON 2020 2015–2018 "Twinning on DNA-based cancer vaccines project". No. H2020-TWINN-2015/CSA-692293 VACTRAIN. Coordinator: prof. dr hab. Maria Bryszewska.
  11. Bilateral program with Belarus 2017–2018 "Dendronized silver nanoparticlesas carriers of siRNA in cancer diseases". Coordinator: dr hab. Katarzyna Miłowska, Associate Professor
  12. Project OPUS 2015–2018 "Cellular and molecular mechanism of action of PPI dendrimer complexes with nucleoside analogue anticancer drugs". UMO-2014/13/B/NZ3/04643. Coordinator: prof. dr hab. Barbara Klajnert-Maculewicz.
  13. Project SONATA 2014–2019 "The transcriptional-epigenetic role of poly (ADP-ribose)-1 polymerase in conditioning expression of pro-inflammatory factors controlled by the NF-κB axis in myeloid effector cells". Coordinator: dr hab. Agnieszka Robaszkiewicz.
  14. Bilateral program with India 2014–2016 "Dendrimers as siRNA carriers in breast cancer". Coordinator: prof. dr hab. Maria Bryszewska.
  15. Bilateral program with Slovakia 2014–2016 "Gold nanoparticles as carriers for HIV-derivedpeptides – biophysical characterisation of formed complexes". Coordinator: dr hab. Maksim Ionov, prof. UŁ
  16. FP7-PEOPLE-2012-IRSES NANOGENE EU-Belarus-Russia Network 2013–2016 in "Nanomaterials-Driven Anti-Cancer Gene Therapy". Coordinator: prof. dr hab. Maria Bryszewska.
  17. Project HARMONIA 2013–2016 "Investigation of phosphorus dendrimers as photosensitizer transporting systems". Coordinator: prof. dr hab. Barbara Klajnert Maculewicz.
  18. Project VENTURES Foundation for Polish Science, PO IG. 2013–2015 "Phosphorus dendrimers as carriers for photosensitizers in photodynamic therapy and its combination with hyperthermia in in vitro studies". Coordinator: M.Sc. Monika Dąbrzalska.
  19. Project HARMONIA 2013–2016 "Investigation of phosphorus dendrimers as photosensitizer transporting systems". Coordinator: prof. dr hab. B. Klajnert-Maculewicz.
  20. Mobilność Plus 2014–2015 "Dendrimer-based Drug Delivery". Coordinator: M.Sc. K. Ciepluch.
  21. Project "Iuventus Plus" 2012–2015 "Dendrimers as nanotransporters of drugs used in gene therapy directed against HIV genes". Coordinator: dr E. Pędziwiatr-Werbicka.
  22. Project HARMONIA 2012–2015 "Mechanisms of interactions between dendrimers and proteins". Coordinator: prof. dr hab. M. Bryszewska.


Patent applications

  1. Application of maltotriose-coated 4th generation polypropyleneimine dendrimer PPI-G4-DS-Mal-III. Franiak-Pietryga I., Bryszewska M., Appelhans D., Klajnert B. PL20120401934 20121206;
    WO2013PL00154 20131203; KR20150099539; JP2016501260; US20150320692
  2. Application of maltotriose-coated 4th generation polypropyleneimine dendrimer PPI-G4-OS-Mal-III. Franiak-Pietryga I., Bryszewska M., Appelhans D., Klajnert B. PL20120401936 20121206;
    WO2013PL00163 20131206; KR20150093216; JP2016501261; US20150306134
  3. Medical application of maltotriose-coated 4th generation polypropyleneimine dendrimer. Franiak-Pietryga I., Bryszewska M., Appelhans D. P.416636
  4. Synthesis of new phosphorus dendrimers and use thereof. Majoral J.P., Apartsin E., Venyaminova A., Bryszewska M., Ionov M., Shcharbin D., Dzmitruk V., Ihnatsyeu-Kachan A. P.418170
  5. A method of measuring the surface potential of sperm to assess sperm quality. Ionov M., Bryszewska M., Gontarek W. P.418894
  6. A device for sperm isolation of high biological quality. Ionov M., Bryszewska M., Gontarek W.
  7. The method of obtaining the conjugate of mesalazine and PAMAM dendrimer of the 4th generation and its use in the manufacture of a drug intended for the treatment of inflammatory bowel disease. Gorzkiewicz M., Marcinkowska M., Klajnert-Maculewicz B., 432894, 13.02.2020



  1. Application of maltotriose-coated 4th generation polypropyleneimine dendrimer PPI-G4-OS-Mal-III. Franiak-Pietryga I., Bryszewska M., Appelhans D., Klajnert B., (a) US Patents: No.: 9,877,985 B2 (b) No.: 10,022,395
  2. A device for sperm isolation of high biological quality. Ionov M., Bryszewska M., Gontarek W., PL Patent DP.P.425365.9: No.: 234520


International collaboration:

  1. Collaboration with Immunomolecular Biology Laboratory w Gregorio Marañon Hospital in Madrid and Inorganic Chemistry Dept., Uniwersytet Alcalá de Henares, Madrid, Spain
  2. Collaboration withUniversity in Urbino, Institute of Chemical Sciences, Italy
  3. Collaboration with Laboratoire de Chimie de Coordination, CNRS, Toulouse, France
  4. Collaboration with Leibniz, Institut fűr Polymerforschung Dresden e.V., Germany
  5. Collaboration with Comenius University in Bratislava, Slovakia
  6. Collaboration withInstitute of Biophysics and Cell Bioengineering, The National Academy of Sciences in Minsk, Belarus
  7. Collaboration with Riga Stradins University, Latvia
  8. Collaboration with Independent Division of Clinical Pharmacology, Universitaet Leipzig, Germany
  9. Collaboration with School of Pharmacy, Universitet Oslo, Norway
  10. Collaboration with Department of Medical Chemistry at the University of Debrecen, Hungary
  11. Collaboration with Oxidative Stress Research Group, Aston University, Birmingham, UK



  1. Cytotoxicity and genotoxicity studies in cell lines – in vitro studies.
  2. The impact of tested compounds on the redox status of model cells.
  3. Model tests using fluorescent markers.
  4. Drug, nanoparticle, polyplex interaction studies: cell components (protein, genetic material).
  5. Research on structural changes of proteins, peptides and nucleic acids by circular dichroism (CD) spectroscopy.
  6. Stability tests for colloids by Doppler electrophoresis.
  7. Nanoparticle size testing using dynamic light scattering (DLS).


Selected publications (2019-2017)


  1. Krasheninina O. A., Apartsin E. K., Szulc A., Ionov M., Venyaminova A. G., Shcharbin D., Javier De la Mata F., Bryszewska M., Gόmez R. Complexes of pro-apoptotic siRNAs and carbosilane dendrimers: Formation and effect on cancer cells. Pharmaceutics, 11(1), 25, 2019
  2. Gorzkiewicz M., Deriu M.A., Studzian M., Janaszewska A., Grasso G., Pułaski Ł., Appelhans D., Danani A., Klajnert-Maculewicz B. Fludarabine-specific molecular interactions with maltose-modified poly(propyleneimine) dendrimer enable effective cell entry of the active drug form: Comparison with Clofarabine. Biomacromolecules, 20(3):1429-1442, 2019
  3. Sztandera K., Gorzkiewicz M., Klajnert-Maculewicz B. Gold nanoparticles in cancer treatment. Molecular Pharmaceutics, 16(1):1-23, 2019.
  4. Tokarz P., Płoszaj T., Regdon Z., Virág L., Robaszkiewicz A. PARP1-LSD1 functional interplay controls transcription of SOD2 that protects human pro-inflammatory macrophages from death under an oxidative condition. Free Radic Biol Med., 131:218-224, 2019.
    doi: 10.1016/j.freeradbiomed.2018.12.004.
  5. Regdon Z., Robaszkiewicz A., Kovács K., Rygielska Ż., Hegedűs C., Bodoor K., Szabó É., Virág L. LPS protects macrophages from AIF-independent parthanatos by downregulation of PARP1 expression, induction of SOD2 expression, and a metabolic shift to aerobic glycolysis. Free Radic Biol Med., 131:184-196, 2019. doi: 10.1016/j.freeradbiomed.2018.11.034.
  6. Pietrzak J., Płoszaj T., Pułaski Ł., Robaszkiewicz A. EP300-HDAC1-SWI/SNF functional unit defines transcription of some DNA repair enzymes during differentiation of human macrophages. Biochim Biophys Acta Gene Regul Mech., 1862(2):198-208, 2019. doi: 10.1016/j.bbagrm.2018.10.019.


  1. Shcharbin D., Pedziwiatr-Werbicka E., Serchenya T., Cyboran-Mikolajczyk S., Prakhira L., Abashkin V., Dzmitruk V., Ionov M., Loznikova S., Shyrochyna I., Sviridov O., Peña-González C.E., Gumiel A.B., Gómez R., de la Mata F.J., Bryszewska M. Role of cationic carbosilane dendrons and metallic core of functionalized gold nanoparticles in their interaction with human serum albumin. International Journal of Biological Macromolecules, 118, 1773-1780, 2018.
  2. Tomalia D., Klajnert-Maculewicz B., Johnson K.A.M, Brinkman H.F., Janaszewska A., Hedstrand D.M. Non-traditional intrinsic luminescence: inexplicable blue fluorescence observed for dendrimers, macromolecules and small molecular structures lacking traditional/conventional luminophores. Progress in Polymer Science, 90, 35–117, 2019.
  3. Sekowski S., Bitiucki M., Ionov M., Zdeb M., Abdulladjanova N., Rakhimov R., Mavlyanov S., Bryszewska M., Zamaraeva M. Influence of valoneoyl groups on the interactions between Euphorbia tannins and human serum albumin. J. Lumin. 194, 170-178, 2018.
  4. Pasternak-Mnich K., Wróbel D., Nowacka O., Pieszyński I., Bryszewska M., Kujawa J. The effect of MLS laser radiation on cell lipid membrane. Ann. Agricult. Environ. Med., 25, 108-113, 2018.
  5. Michlewska S., Ionov M., Maroto-Diaz M., Szwed A., Ihnatsyeu-Kachan A., Loznikova S., Shcharbin D., Maly M., Gomez Ramirez R., de la Mata F.J., Bryszewska M. Ruthenium dendrimers as carriers for anticancer siRNA. J. Inorg. Biochem., 181, 18-27, 2018.
  6. Franiak-Pietryga I., Ostrowska K., Maciejewski H., Ziemba B., Appelhans D., Voit B., Jander M., Treliński J., Bryszewska M., Borowiec M. Affecting NF-κB cell signaling pathway in chronic lymphocytic leukemia by dendrimers-based nanoparticles. Toxicol. Appl. Pharmacol., 357, 33-38, 2018.
  7. Pandi P., Jain A., Kommineni N., Ionov M., Bryszewska M., Khan W. Dendrimer as a new potential carrier for topical delivery of siRNA: A comparative study of dendriplex vs. lipoplex for delivery of TNF-α siRNA. Int. J. Pharm., 550, 240-250, 2018.
  8. Bulbake U., Kommineni N., Bryszewska M., Ionov M., Khan W. Cationic liposomes for co-delivery of paclitaxel and anti-Plk1 siRNA to achieve enhanced efficacy in breast cancer. J. Drug Deliv. Sci. Technol., 48, 253-265, 2018.
  9. Ficker M., Theeuwen M.J.M., Janaszewska A., Gorzkiewicz M., Svenningsen S.W., Klajnert-Maculewicz B., Christensen J.B. Complexes of indomethacin with 4-carbomethoxy-pyrrolidone PAMAM dendrimers show improved anti-inflammatory properties and temperature-dependent binding and release profile. Molecular Pharmaceutics, 15(8):3573-3582, 2018.
  10. Gorzkiewicz M., Buczkowski A., Appelhans D., Voit B., Pułaski Ł., Pałecz B., Klajnert-Maculewicz B. Poly(propyleneimine) glycodendrimers non-covalently bind ATP in a pH-and salt-dependent manner-model studies for adenosine analogue drug delivery. International Journal of Pharmaceutics, 544(1):83-90, 2018.
  11. Gorzkiewicz M., Sztandera K., Jatczak-Pawlik I., Zinke R., Appelhans D., Klajnert-Maculewicz B., Pulaski Ł. Terminal sugar moiety determines immunomodulatory properties of poly (propyleneimine) glycodendrimers. Biomacromolecules, 19(5):1562-1572, 2018.
  12. Gorzkiewicz M., Jatczak-Pawlik I., Studzian M., Pułaski Ł., Appelhans D., Voit B., Klajnert-Maculewicz B. Glycodendrimer nanocarriers for direct delivery of fludarabine triphosphate to leukaemic cells: improved pharmacokinetics and pharmacodynamics of fludarabine. Biomacromolecules, 19(2):531-543, 2018.
  13. Janaszewska A., Gorzkiewicz M., Ficker M., Petersen J.F., Paolucci V., Christensen J.B., Klajnert-Maculewicz B. Pyrrolidone modification prevents PAMAM dendrimers from activation of pro-inflammatory signaling pathways in human monocytes. Molecular Pharmaceutics, 15(1):12-20, 2018.
  14. Pietrzak J., Spickett C.M., Płoszaj T., Virág L., Robaszkiewicz A. PARP1 promoter links cell cycle progression with adaptation to oxidative environment. Redox Biol., 18:1-5, 2018. doi: 10.1016/j.redox.2018.05.017.
  15. Hegedűs C., Kovács K., Polgár Z., Regdon Z., Szabó É., Robaszkiewicz A., Forman H.J., Martner A., Virág L. Redox control of cancer cell destruction. Redox Biol., 16:59-74, 2018.
    doi: 10.1016/j.redox.2018.01.015.
  16. Robaszkiewicz A., Wiśnik E., Regdon Z., Chmielewska K., Virág L. PARP1 facilitates EP300 recruitment to the promoters of the subset of RBL2-dependent genes. Biochim Biophys Acta Gene Regul Mech., pii: S1874-9399(17)30290-0, 2017. doi: 10.1016/j.bbagrm.2017.12.001.
  17. Tempka D., Tokarz P., Chmielewska K., Kluska M., Pietrzak J., Rygielska Ż., Virág L., Robaszkiewicz A. Downregulation of PARP1 transcription by CDK4/6 inhibitors sensitizes human lung cancer cells to anticancer drug-induced death by impairing OGG1-dependent base excision repair. Redox Biol., 15:316-326, 2018. doi: 10.1016/j.redox.2017.12.017.


  1. Pena-Gonzalez C.E., Pedziwiatr-Werbicka E., Shcharbin D., Guerrero-Beltran C., Abashkin V., Loznikova S., Jimenez J.L., Munoz-Fernandez M.A., Bryszewska M., Gomez R., Sanchez-Nieves J., de la Mata F.J. Gold nanoparticles stabilized by cationic carbosilane dendrons: synthesis and biological properties. Dalton Trans., 46, 8736-8745, 2017.
  2. Ihnatsyeu-Kachan A., Dzmitruk V., Apartsin E., Krasheninina O., Ionov M., Loznikova S., Venyaminova A., Milowska K., Shcharbin D., Mignani S., Munoz-Fernandez M.A., Majoral J.P., Bryszewska M. Multi-target inhibition of cancer cell growth by siRNA cocktails and 5-Fluorouracil using effective piperidine-terminated phosphorus dendrimers. Colloids and Interfaces, 2017,
    doi: for peer
  3. Pedziwiatr-Werbicka E., Serchenya T., Shcharbin D., Terekhova M., Prokhira E., Dzmitruk V., Shyrochyna I., Sviridov O., Pena-Gonzalez C.E., Gomez R., Sanchez-Nieves J., de la Mata F.J., Bryszewska M. Dendronization of gold nanoparticles decreases their effect on human alpha-1-microglobulin. Int. J. Biol. Macromol., 2017.
  4. Pena-Gonzalez C.E., Pedziwiatr-Werbicka E., Martin-Perez T., Szewczyk E.M., Copa-Patino J.L., Soliveri J., Perez-Serrano J., Gomez R., Bryszewska M., Sanchez-Nieves J., de la Mata F.J. Antibacterial and antifungal properties of dendronized silver and gold nanoparticles with cationic carbosilane dendrons. Int. J. Pharm., 528, 55-61, 2017.
  5. Michlewska S., Ionov M., Shcharbin D., Maroto-Diaz M., Gomez Ramirez R., de la Mata F.J., Bryszewska M. Ruthenium metallodendrimers with anticancer potential in an acute promyelocytic leukemia cell line (HL60). Eur. Polymer J. 87, 39-47, 2017.
  6. Wrobel D., Marcinkowska M., Janaszewska A., Appelhans D., Voit B., Klajnert-Maculewicz B., Bryszewska M., Stofik M., Herma R., Duchnowicz P., Maly J. Influence of core and maltose surface modification of PEIs on their interaction with plasma proteins – Human serum albumin and lysosyme. Coll. Surf. B: Biointerfaces, 152, 18-28, 2017.
  7. Shcharbin D., Shcharbina N., Dzmitruk V., Pedziwiatr-Werbicka E., Ionov M., Mignani S., de la Mata F.J., Gomez R., Munoz-Fernandez M.A., Majoral J.P., Bryszewska M. Dendrimer-protein interactions versus dendrimer-based nanomedicine. Coll. Surf. B:Biointerfaces, 152, 414-422, 2017.
  8. Mignani S.M., El Brahmi N., El Kazzouli S., Laurent R., Ladeira S., Caminade A-M., Pedziwiatr-Werbicka E., Szewczyk E.M., Bryszewska M., Bousmina M.M., Cresteil T., Majoral J.P. Original multivalent gold(III) and dual gold(III)-copper(II) conjugated phosphorus dendrimers as potent antitumoral and antimicrobial agents. Mol. Pharm., 2017, doi: 10.1021/acs.molpharmaceut.7b00771.
  9. Sekowski S., Ionov M., Abdulladjanova N., Makhmudov R., Mavlyanov S., Milowska K., Bryszewska M., Zamaraeva M. Interaction of α-synuclein with Rhus typhina tannin – Implication for Parkinson's disease. Coll. Surf. B:Biointerfaces, 155, 159-165, 2017.
  10. Franiak-Pietryga I., Maciejewski H., Ziemba B., Appelhans D., Voit B., Robak T., Jander M., Treliński J., Bryszewska M., Borowiec M. Blockage of Wnt/β-catenin signaling by nanoparticles reduces survival and proliferation of CLL cells in vitro – preliminary study. Macromol. Biosci., 2017,
    doi: 10.1002/mabi.201700130.
  11. Shcharbin D., Pedziwiatr-Werbicka E., Vcherashniaya A., Janaszewska A., Marcinkowska M., Goska P., Klajnert-Maculewicz B., Ionov M., Abashkin V., Ihnatsyeu-Kachan A., de la Mata F.J., Ortega P., Gomez-Ramirez R., Majoral J.P., Bryszewska M. Binding of poly(amidoamine), carbosilane, phosphorus and hybrid dendrimers to thrombin – constants and mechanisms. Coll. Surf. B: Biointerfaces, 155, 11-16, 2017.
  12. Mignani S., Bryszewska M., Zablocka M., Klajnert-Maculewicz B., Cladera J., Shcharbin D., Majoral J.P. Can dendrimer based nanoparticles fight neurodegenerative diseases? Current situation versus other established approaches. Progress in Polymer Science, 64, 23-25, 2017.
  13. Gorzkiewicz M., Klajnert-Maculewicz B. Dendrimers as nanocarriers for nucleoside analogues. European Journal of Pharmaceutics and Biopharmaceutics, 114:43-56, 2017.
  14. Jatczak-Pawlik I., Gorzkiewicz M., Studzian M., Appelhans D., Voit B., Pulaski L., Klajnert-Maculewicz B. Sugar-modified poly(propylene imine) dendrimers stimulate the NF-κB pathway in a myeloid cell line. Pharmaceutical Research, 34(1):136-147, 2017.
  15. Wiśnik E., Płoszaj T., Robaszkiewicz A. Downregulation of PARP1 transcription by promoter-associated E2F4-RBL2-HDAC1-BRM complex contributes to repression of pluripotency stem cell factors in human monocytes. Sci Rep., 7(1):9483, 2017. doi: 10.1038/s41598-017-10307-z.


Examples of B.Sc. thesis titles:

  1. Nanomedicine in combating cancer – possibilities and limitations.
  2. Toxicity of nanoparticles.
  3. Nanoparticles in clinical trials.
  4. Dendrimers as drugs for infectious diseases.
  5. Carriers for drugs and genetic material.
  6. Characteristics of phosphorus dendrimers.
  7. The role of dendrimers in anti-HIV therapy.
  8. Toxic proteins in neurodegenerative diseases.
  9. The role of free radicals in neurodegenerative diseases.
  10. Change in gene expression due to cell differentiation.
  11. The role of the cell cycle in determining gene transcription.
  12. Modulating gene transcription in cancer therapies.

Examples of M.Sc. thesis titles:

  1. Hybrid carbosilane-viologen-phosphorus dendrimers as carriers of short nucleic acids in HIV therapy.
  2. The role of viologen-phosphorus dendrimers in the fibrillation of α-Synclein.
  3. Biological properties of titanium oxide containing nanoparticles.
  4. Interaction of PAMAM dendrimers with bovine insulin.
  5. Toxicity of modified SBA-15 mesoporous silicas.
  6. Biological properties of viologene-carbosilane-phosphorus dendrimers.
  7. Effect of GATG [G3]-Mor dendrimers on the aggregation process of Aβ 1-40 amyloid peptide.
  8. Evaluation of the possibility of using cyclin-4 and 6-dependent cyclin inhibitors to sensitize cancer cells to drugs that generate oxidative stress.
  9. Detection of ADP-ribosylation of chromatin-related proteins within the promoter sequences of selected pro-inflammatory cytokines.


Useful links:

Interview with prof. Maria Bryszewska
Nano2Clinic, COST Action CA17140
Project Vactrain